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1 Preliminaries
Definition 1 (Fourier transform). Let f ∈ Lp(R2). The Fourier transform F : Lp → Lq, of f , denoted f̂ at
(ω1ω2) is defined by

f̂(ω1, ω2) =

∫
R2

f(x, y)e−i2π(x,y)·(ω1,ω2) dx dy. (1)

For the remainder of this document, given an angle θ, we will let ξθ denote the unit vector (cos θ, sin θ).

Definition 2 (Radon Transform). Let f ∈ L2(R2). The Radon transform of f at (t, θ), denoted Rf(t, θ) is
given by

Rf(t, θ) =

∫
R2

f(x, y)δ(t− (x, y) · ξθ) dx dy. (2)

Equivalently,

Rf(t, θ) =

∫
t=(x,y)·ξθ

f(x, y)dσ (3)

2 Tomography
In many applications, the Radon transform of a function f will be acquired at a dense set of points t, for
some small number of angles θ. Therefore it is sometimes convenient to consider the Radon transform as a
collections of projections of f at angles {θi}ki=1. We define the projection operator at angle θ by

Pθf(x) =

∫
R
f((x, y)QTθ ) dy, (4)

where
Qθ =

(
cos θ − sin θ
sin θ cos θ

)
,

is a rotation matrix. Note that Rf(x, θ) = Pθf(x).
The general tomography problem refers to reconstructing an approximation of f given a collection of

projections of f , {Pθif}ki=1. Typical difficulties include, limited angular ranges (like in SAR), few projections
due to object sensitivity, and noisy data. At the very least, it should be verified that f can be exactly
recovered from full knowledge of Pθf(x) at all values θ ∈ [0, π) and x ∈ R. The following theorem confirms
this:

Theorem 3 (Fourier Slice Theorem). P̂θf(ω) = f̂(ωξθ), i.e.∫
R
Pθf(x)e

−i2πxω dx =

∫∫
R2

f(x, y)e−i2πω(x,y)·ξθ dx dy. (5)
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Proof. Simply write out the expression for P̂θf(ω) as a double integral, and make the substitution (α, β) =
(x, y)QTθ .

The Fourier slice theorem gives rise to particular reconstruction techniques known as Fourier backprojec-
tion, which is basically an inversion formula that compensates for the polar sampling of f that leaves larger
spacing for high frequencies (demonstrated in figure-1). This compensation is done by applying a ramp filter
to the Fourier samples which gives more weight to the high frequencies.
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Figure 1: Left: a projection of a blob at angle θ. Right: Visual representation of location of polar samples
in Fourier space equivalent to a set of angular projections.

3 Practical Tomography Setting

Given data: {Pθ`f(xp)}
k,α
`=1,p=1 (k = 50 and α = 1024 for instance).

Goal: Reconstruct a pixel image frec = {fj}n
2

j=1, which is a “good” approximation of the object.

Each integral can be modeled as a weighted sum of f (like a Riemann sum):

Pθ`f(xp) =

n2∑
j=1

w`,pj fj = 〈w`,p, f〉.

We define bm(`,p) = Pθ`f(xp),

W = {w`,pj }
n2,k,α
j,`,p=1 and b = {bm(`,p)}k·αm=1,

where for W , the index j is over the columns and `, p is over the rows and W ∈ R(k·α)×n2

.
Note that for each (l, p), #{j : wl,pj 6= 0} = O(n), so that W is relatively sparse. Finally then, the

reconstruction is given by
frec = argmin

f

{
‖Wf − b‖22 + λ‖f‖N

}
, (6)

or
frec = argmin ‖f‖N s.t. Wf = b, (7)
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where ‖ · ‖N is some norm or seminorm.
Typically, the number of measurments k ·α� n2 so that the linear system is underdetermined. However,

this can be misleading, since the rows of W are not necessarily linear independent. Also, likely W does not
satisfy the incoherency properties or RIP properties needed for the compressed sensing theories, although
some have argued otherwise via the Fourier Slice Theorem.

3.1 Real Space Backprojection Methods
Backprojection methods for tomographic reconstruction are geometrically motivated and simply iteratively
“smear” back the projection values onto the image domain. The most basic of these is known as algebraic
reconstruction technique (ART) and was discovered in tomography (1970). The method was independently
discovered in linear algebra and is known Kacmarz method (1937).

ART/ Kacmarz: Let the the current solution at iterate k be fk. At iterate k + 1 randomly select a
projection value bm(`,p) and smear the difference between fk and bm evenly over fk to obtain fk+1 satisfying

〈fk+1, w`,p〉 = bm(`,p). (8)

This yields the formula

fk+1 = fk + λk
bm − 〈w`,p, fk〉
‖w`,p‖22

w`,p. (9)

Generalization (SIRT, SART): One can generalize the method of ART so that projection values
{bm(`,p)} are “simultaneously” backprojected at each iterate. This yields techniques such as simultaneous
iterative reconstruction technique (SIRT). This is possible for example, one can imagine that projection
values {bm(`,p)}p for a fixed angle θ` correspond to parallel paths through the image and therefore do not
interfere with each other for the backprojection procedures.

Convergence: Backprojection methods are known to converge to the least squares solution. That is, in
terms of (7), the norm is ‖ · ‖2, and the solution is given by

frec =W+b =W (WWT )−1b. (10)

Therefore one can use alternative methods such as conjugate gradient least square (CGLS). However, CGLS
methods do not handle additional constraints well, such as f ≥ 0 and volume constraints, where as SIRT
can naturally implement these conditions.

Parceval’s theorem (and orthogonality) gives us

‖f‖2 = ‖f̂‖2. (11)

Therefore returning to the Fourier slice theorem, all values (ω1, ω2) of f̂rec(ω1, ω2) given by a least squares
solution will be zero over the lines in which the data is missing. This is obviously not an ideal solution.

3



Figure 2: Simple box image (left) and the projections of the box (right) viewed as a sinogram.

Figure 3: Logan-shepp phantom (left) and the projections of the phantom (right) viewed as a sinogram.
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Figure 4: Reconstructions from a total angular range of 120 degrees out of 180. Top: Backprojection/ least
squares. Bottom: TV regularized reconstruction. On the left are the reconstructions and the right are log
scale images the Fourier transform of the reconstructions.
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4 Relation to SAR Data (Briefly)
With data acquisition for SAR, a plane sends pulses of electromagnetic waves to the scanning field of interest
as it flies along some path, which is perhaps circular. The echo or response is measured by an antenna for
each positioning of the plane relative to the scanning field. The information gathered is equivalent to values
of the Fourier transform of a reflexivity map of the scanning field, along polar lines where the angle of each
line corresponds to position of the plane relative to the scanning field. Certainly, all of this is discretized, with
a discrete number of angles and values acquired for each angle. For example, we may have {f̂(ωjξθi)}

k,n
i,j=1.

Certainly then, by previous discussion the SAR data is equivalent to tomography data simply by a one-
dimensional Fourier transforms and backprojection techniques are similar in this setting.
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