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Abstract

A brief discussion on maximum likelihood and Stein’s unbiased risk estimator in the context of inverse
problems, and in particular image deconvolution.

A Perspective Based on Image Deconvolution

Assume blurry/noisy image data takes the form

b = h ∗ v + ϵ, (1)

where h ∈ RN is the PSF, v ∈ RN is the image we want to estimate, and ϵ ∼ N(0, σ2I). Any convolution
h ∗ u we will also write as Hu, where H is a square circulant matrix. Since the noise is i.i.d. Gaussian, the
ML estimator takes the form

u∗
ML = argmax

u
p(b|u)

= argmax
u

exp

(
− 1

2σ2
∥Hu− b∥22

)
= argmin

u
∥Hu− b∥22.

(2)

For any arbitrary estimate of v given by u∗, SURE provides the estimator for the blurred square error given
by [1, 2]

SURE(u∗) = E
[
∥H(u∗ − v)∥22

]
= −Nσ2 + ∥Hu− b∥22 + 2σ2

N∑
j=1

∂

∂bj
(Hu)j .

(3)

Clearly, minimizing SURE given in (3) is not equivalent to the ML estimator in (2). This may be observed
simply because SURE already contains the squared error term from the ML estimator, but it also includes
the sum containing the partial derivatives. However, we want to understand their difference on a more
philosophical level.

First note that ML simply works to match the data as closely as possible by minimizing the squared
error. The solution (without any concern for dividing by zero) is given by multiplication with the pseudo
inverse

u∗
ML = (HTH)−1HTb. (4)

This solution is that which effectively deconvolves by dividing by the PSF. It will return back the best match
to the blurry data image, but will result in awful artifacts in the image due to the noise term. Effectively,
(HTH) contains eigenvalues very, very close to zero, so that (HTH)−1 blows-up (see section below), making
it very sensitive to changes in the data (a noise term).
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SURE on the other hand works to minimize the statistical estimate of the (blurred) squared error of
the recovered solution and the true underlying image, not the measured data. This inherently takes into
account the nature of the inverse method applied and how sensitive this solution is to change in the data,
i.e. random noise. This manifests in the last term of SURE, namely the term from (3) given by

N∑
j=1

∂

∂bj
(Hu)j . (5)

Observe, this is precisely a measure of the sensitivity of the solution is to the data!!! Furthermore, the larger
the noise is (σ), the larger this penalty is, which is seen by the 2σ2 coefficient in front of the sum in (3).
So SURE may be seen in this light as including a penalty for inverse methods that are overly sensitive to
perturbations in the data (indeed they should not be overly sensitive, right?). In conclusion, the SURE
estimator manifests as a balancing act between fitting the data (the least squares data fit term as in the ML
estimator), and reducing the sensitivity to the noise (the term in (5)).

Finally, for completeness, we mention the maximum a posteriori estimator (MAP), which is given by

u∗
MAP = argmax

u
p(u|b)

= argmax
u

p(b|u)p(u)

= argmax
u

exp

(
− 1

2σ2
∥Hu− b∥22

)
p(u)

= argmin
u

1

2σ2
∥Hu− b∥22 − log p(u).

(6)

This works in a similar fashion as SURE, by including a penalty term − log p(u). This will penalize bad or
undesirable images. It can be a challenge to model − log p(u) (e.g. total variation) and scale it properly
with the p(b|u) term. The approach I often use is to evaluate MAP estimators for different parameters and
choose the MAP estimator which minimizes SURE, thus ensuring we have optimized the MAP parameters.
Indeed, this is precisely the method I used in my recent SURE-based PSF estimation paper.

Basic Analysis of the Sensitivity of Inverse Problems

Let’s suppose more generally the data takes the form

b = Av + ϵ, (7)

where now A is an arbitrary matrix operator. Let the SVD of A be given by

A = USV T =

r∑
j=1

σjujv
T
j , (8)

where r is the rank of A, and uj and vj make up the columns of U and V respectively, and S is a diagonal
containing the values σj . Let’s assume for the sake of the discussion that A has fewer columns than rows,
so that the pseudo inverse of A is given by

A+ = (ATA)−1AT

= (V STSV T)−1V STUT

= V (STS)−1V TV STUT

= V (STS)−1STUT

=

r∑
j=1

σ−1
j vju

T
j .

(9)
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Combining this with (7) and (8), the naive ML solution to the inverse problem is

u∗
ML = A+b = (A+Av + ϵ)

=

 r∑
j=1

σ−1
j vju

T
j

 r∑
j=1

σjujv
T
j

 v +

 r∑
j=1

σ−1
j vju

T
j

 ϵ

=

 r∑
j=1

vjv
T
j

 v +

 r∑
j=1

σ−1
j vju

T
j

 ϵ

(10)

Observe that the first term in the last expression returns the part of the solution u that is in the range of
A, while the second term returns some additional noise term. The real issue is that small singular values σj

will cause the term to blow-up in an awful way due to the appearance of their inverses.
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